G of Alpha (\$GOA) — Whitepaper v1.0

Corrected & Upgraded Edition

Fixed-Supply Tokenomics, Fiat-Supported Buybacks, Robust Oracle Floor, and Automated Redistribution

G of Alpha LLC

Contents

1	Vision	2				
2	System Overview					
3	Token Summary					
4	Token Allocation	2				
5		3 3 3 3 4				
6	Buybacks & Redistribution6.1Buyback & Recycle Wallet Flow6.2Post-Buyback Redistribution Policy	4 4				
7	Contributor Emissions (Decay to Zero)	4				
8	Data Quality & Anti-Sybil	4				
9	Staking	5				
10	Governance 10.1 Scope 10.2 Guardrails	5 5				
11	Security & Operations	5				
12	Roadmap	5				
13	Conclusion	6				

1 Vision

Artificial Intelligence depends on high-quality data, yet contributors are rarely compensated proportionally to the value they create. G of Alpha (\$GOA) establishes a transparent, smart-contract-driven economy where:

- Contributors are algorithmically compensated for validated, high-quality data.
- Users subscribe to AI services for a flat \$10/month (flat) or an equivalent in \$GOA at a protected floor.
- Fiat revenue (optionally including a 10% premium) funds open-market buybacks of \$GOA, with acquired tokens siloed to a Recycle Wallet for redistribution to the community.
- Emissions decay to zero over time; thereafter, contributor rewards are sustained by the buybackand-redistribution loop.

2 System Overview

- Chain: Solana (SPL Token).
- Use: \$GOA powers data contribution rewards, staking, and governance.
- Pricing: Subscriptions are \$10/month in fiat or a calculated quantity of \$GOA (Section 5).
- Buybacks: Fiat receipts are periodically used to repurchase \$GOA on the open market and deposit them into a Recycle Wallet for redistribution (Section 6).
- Automation Path: Early operations may be partially manual; all core flows migrate to audited smart contracts per roadmap (Section 12).

3 Token Summary

• Token: G of Alpha (\$GOA)

• Blockchain: Solana (SPL)

• Total Supply: 1,000,000,000,000 (fixed; mint disabled permanently)

• Decimals: 6

• Initial Reference Price: \$0.000001

4 Token Allocation

Category	Allocation
Public Sale	$10\%~(100 {\rm B}~{\rm SGOA})$
Company Reserve (1-year lock)	$10\%~(100{ m B~\$GOA})$
Contributor Emission Pool	$80\%~(800 {\rm B}~{\rm SGOA})$

5 Unified Pricing Model

5.1 Subscription Options

• Fiat: \$10 per month (always).

• Tokens: Quantity computed by a floor-protected price (Section 5.3).

5.2 Oracle Aggregation (Median-of-Multiple)

To prevent single-feed failures and mitigate manipulation, \$GOA uses a median of multiple oracles:

- 1. Fetch prices P_i from N independent feeds (e.g., Chainlink, Pyth, RedStone, DEX TWAPs), normalized to USD per \$GOA.
- 2. Enforce freshness (age \leq STALE_MAX) and deviation bounds vs. a rolling aggregate.
- 3. Compute $p_{\text{med}} = \text{median}(\{P_i\})$ over the valid feeds.
- 4. Require at least M valid feeds (e.g., M=3). The system is provisioned to keep M satisfied for continuous liveness.

5.3 Token Pricing with FDV Floor (Downside-Only)

Let:

$$F = {
m FDV}$$
 floor in USD = \$1,000,000,
 $S = {
m fixed}$ total supply of \$GOA,
 $p_{
m floor} = rac{F}{S}, \quad p_{
m used} = {
m max} ig(p_{
m med}, \, p_{
m floor}ig).$

Then the monthly token charge is

$$Q = \left\lceil \frac{10}{p_{\text{used}}} \right\rceil. \tag{1}$$

Behavior:

- If $p_{\text{med}} > p_{\text{floor}}$ (FDV above \$1,000,000): users pay fewer tokens (market-priced).
- If $p_{\text{med}} \leq p_{\text{floor}}$ (FDV at/below \$1,000,000): users pay a fixed floor amount $Q = \left\lceil \frac{10}{p_{\text{floor}}} \right\rceil = \left\lceil \frac{10S}{F} \right\rceil$.
- Fiat remains \$10, always.

5.4 Pricing Examples (with S = 1,000,000,000,000)

At this supply, $p_{\text{floor}} = \frac{1,000,000}{1,000,000,000,000} = \0.000001 and the floor token amount is $\left\lceil \frac{10}{0.000001} \right\rceil = 10,000,000 \$ GOA$.

_			
I	FDV (USD)	$p_{ m med}~({ m USD}/{ m \$GOA})$	Tokens Charged Q
	\$1,000,000	0.000001	10,000,000 (floor)
	\$5,000,000	0.000005	2,000,000
	\$10,000,000	0.000010	1,000,000
	\$50,000,000	0.000050	200,000

5.5 Accounting Convention

For revenue splits and reporting, token payments are valued at

USD_value =
$$Q \cdot p_{\text{used}} \approx $10$$
,

ensuring all downstream allocations (Section 6) match the pricing logic used at charge time.

6 Buybacks & Redistribution

6.1 Buyback & Recycle Wallet Flow

- 1. **Fiat receipts** (and an optional 10% premium) are periodically used to buy \$GOA on public markets.
- 2. **All acquired tokens** are deposited into a designated *Recycle Wallet* (not burned, not retained by the company).
- 3. **Redistribution:** Tokens in the Recycle Wallet are distributed on-chain per the allocation policy below.

6.2 Post-Buyback Redistribution Policy

Destination	Share	Purpose
Contributors	70%	Incentives for validated data contributions
Company Treasury	20%	R&D, operations, audits, infra
Stakers	5%	Usage-linked rewards for \$GOA holders
Community DAO	5%	Grants, community initiatives, governance ops

7 Contributor Emissions (Decay to Zero)

Initial rewards are emitted from the Contributor Emission Pool following an exponential decay:

$$R(C) = R_0 \cdot e^{-kC/T}, \tag{2}$$

where $R_0 = 1000 \, GOA/KB$, k = 3, T = 1,000,000,000,000, and C is circulating supply.

Example: At launch, 10MB (10,000KB) of top-quality data yields 10,000,000 \$GOA.

8 Data Quality & Anti-Sybil

To keep emissions and redistribution aligned with real value creation, submissions are evaluated by a decentralized scoring engine that applies:

- Schema/format validation, entropy & redundancy checks, anomaly detection.
- Measured model-uplift attribution ("proof-of-usefulness").
- Identity and duplication controls; per-epoch contributor caps during bootstrap.
- Evaluator staking & slashing: reviewers stake \$GOA and can be penalized for low-integrity scoring.

9 Staking

- 5% of all payments (using the accounting convention in Section 5) are routed to stakers.
- Rewards are usage-linked and distributed by smart contracts; no fixed APR is promised.

10 Governance

10.1 Scope

Governable (DAO):

- Emission parameters: R_0 , k.
- Pricing parameters: STALE_MAX, deviation bounds, M, and the minimum-spend floor (via F or explicit token amount given S).
- Evaluation parameters: scoring weights, staking & slashing rates, per-epoch caps.

Non-Governable:

- Total supply S (1,000,000,000,000) and permanent mint disablement.
- Fiat subscription price (\$10/month) and the existence of the FDV floor itself.

10.2 Guardrails

- Bounds: Explicit min/max ranges for each governable parameter.
- Timelocks: Parameter changes activate after a multi-epoch delay.
- Rate limits: Maximum per-change delta and per-period change frequency.
- Transparency: On-chain proposals with human-readable summaries and simulators.

11 Security & Operations

- Independent audits for all on-chain components (emissions, staking, oracle aggregation, redistribution).
- Public addresses for the Recycle Wallet and treasury, with dashboards for inflows/outflows.
- Regular transparency reports: buyback volumes, token redistribution, evaluator performance metrics.

12 Roadmap

Q4 2025

- Token launch on Solana; emission and staking contracts live.
- Floor-aware pricing logic deployed with multi-oracle median aggregation.
- Contributor & buyer dashboards; fiat on-ramp operational.

$\mathbf{Q1}\mathbf{-Q2}\ \mathbf{2026}$

- Governance dashboard (e.g., Solana Realms) and DAO treasury tools.
- Automation of fiat-to-buyback pipeline end-to-end.
- Evaluator SDK, advanced anti-Sybil, and model-uplift attribution modules.

13 Conclusion

G of Alpha (\$GOA) delivers a sustainable AI-data economy: flat-rate access for users, floor-protected token pricing with upside left intact, emissions that fade into a buyback-powered redistribution loop, and governance that increases community control over time. The design emphasizes liveness, transparency, and credible scarcity to align incentives across contributors, users, and long-term builders.

Disclaimer: This document is for informational purposes only and does not constitute an offer to sell or a solicitation of an offer to buy any security, commodity, or other financial instrument.